On the jump-independence of the weighted L projection
نویسنده
چکیده
This work gives an affirmative answer to a long time research problem. The weighted L projection is of optimal order in approximation measured in the weighted L norm, and stable in the weighted semi-H norm, independent of the jump of the constant weights, in 2D and 3D finite element spaces.
منابع مشابه
Hedging of Options in Jump-Diffusion Markets with Correlated Assets
We consider the hedging problem in a jump-diffusion market with correlated assets. For this purpose, we employ the locally risk-minimizing approach and obtain the hedging portfolio as a solution of a multidimensional system of linear equations. This system shows that in a continuous market, independence and correlation assumptions of assets lead to the same locally risk-minimizing portfolio. ...
متن کاملSome Estimates for a Weighted L2 Projection
This paper is devoted to the error estimates for some weighted L projections. Nearly optimal estimates are obtained. These estimates can be applied to the analysis of the usual multigrid method, multilevel preconditioner and domain decomposition method for solving elliptic boundary problems whose coefficients have large jump discontinuities.
متن کامل$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles
In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle. We prove optimal estimates for the mapping properties of the Bergman projection on these domains.
متن کاملOn reducibility of weighted composition operators
In this paper, we study two types of the reducing subspaces for the weighted composition operator $W: frightarrow ucdot fcirc varphi$ on $L^2(Sigma)$. A necessary and sufficient condition is given for $W$ to possess the reducing subspaces of the form $L^2(Sigma_B)$ where $Bin Sigma_{sigma(u)}$. Moreover, we pose some necessary and some sufficient conditions under which the subspaces of the form...
متن کاملCompact weighted Frobenius-Perron operators and their spectra
In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.
متن کامل